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On the geometry of chiral dynamics: I1 

J. S. DOWKER 
Department of Theoretical Physics, University of Manchester 
MS.  received 24th September 1969 

Abstract. Previous work on the geometry of group space appropriate to the 
problem of chiral symmetry is extended to cover ‘other fields’ with the object 
of elucidating the relation between those fields which transform linearly and 
those which do not. The  different fields just correspond to different choices of 
the local coordinates which must be set up to define ‘spinors’. 

The  results for specific quantities such as transformation matrices and 
covariant deriyatives agree with those of other papers. 

1. Introduction 
This paper is essentially a continuation of a previous one (Dowker 1970, to be 

referred to as I) and, to save repetition, we refer to this last for all undefined quantities. 
In  I the basic structure of group space was detailed? and the chiral group G@G 
introduced as the (connected) group of motions on the group space of G. The  0- 
mesons are associated with the coordinates of this space. 

2. The ‘other fields’ problem 
We now must introduce nucleons (for SU(2)) and quarks (for other groups) into 

the scheme. Meetz (1969) has already employed a method of Pauli’s for the introduc- 
tion of spin into general relativity (i.e. into curved space-time) in this connection (see 
e.g. De Witt and De Witt 1952). In  some ways this is confusing since the situation is 
really more akin to that in flat space-time, the essential thing being the existence of 
groups of motions in the space. Thus in a general space-time it is not possible to 
introduce a spinor as a geometrical object (Cartan 1938). One can only introduce 
them locally through the orthogonal transformations (homogeneous groups of motions) 
of the flat tangent spaces (see, for example, Dowker and Dowker 1966 for a general 
discussion and literature). Under general coordinate transformations the spinor 
fields transform as scalars. That is, the spinor space transformations are quite 
separate from the general coordinate transformations of the underlying manifold. 
The  link between these two spaces is provided by the connecting quantities like the 
Pauli or Dirac matrices which transform like vectors under general coordinate trans- 
formations. This means, for example, that the bilinear object $yg# is a vector field 
in the curved space. If the flat space limit of this situation is taken, then all the 
tangent spaces merge with the underlying manifold essentially into one flat space. 
We are now in the realm of special relativity and Lorentz transformations and we 
see that under these latter the spinor # does not transform but that the y’ do. The  
important thing is that the physical bilinear $yg$ should be a vector. Normally one 
takes the yu as purely numerical quantities not affected by Lorentz transformations 
and the field then carries the full transformation. This is possible because of the 
theorem that if xu -+ ayp” is a Lorentz transformation then there exists a non-singular 
matrix 5’ such that 

t In addition to the references in I the reader will find in Hodge (1952, chap. V) a rapid 

45 
survey of the geometry of group space together with some interesting topological results. 
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S is now the spinor transformation matrix. We see that the essential thing is the 
existence of a set of preferred coordinate frames (Cartesian) which are transformed into 
each other by a group of motions (Lorentz transformations). All this is well known. 

The  situation is entirely analogous in group space, the role of the Lorentz trans- 
formations being played by K. Preferred coordinate systems will be preferred anholo- 
nomic, or local, coordinates defined by fields A:, A5 satisfying at each point the 
condition 

B c r  C B c r  
CAB = A;A,A,C;~ c,C, = A~~A,A,c ;~ ,  

Given such a set at one point if it is ‘dragged along’ by the point transformation 
5 + ‘ 5  belonging to K ,  it becomes another such set. This follows from the equations 

which can be shown analytically, using, for example, the equivalence of ‘dragging 
along’ and parallel displacement given in I, 5 3. 

Thus, under ‘dragging along’ by a point transformation belonging to the first 
(second) parameter group, the AE(A2) suffer a transformation belonging to the adjoint 
group while the AZ(ACC,) remain invariant. In  other words if we define ‘dragged along’ 

fields, A:, Af ,  we have, at every point, 
m m  

under second parameter group 
ma A, = A, 

Thus the analogue of the Lorentz group is the adjoint group and so we introduce the 
linear representations of the latter and denote the corresponding vectors +, +. Under 
left (right) transformations +(+) undergoes the adjoint transformation while +(+) 
remains invariant. Under reflection + and #I exchange places. 

L R  

L R  R L  

L R 

In  symbols, under a transformation of K, 5 + ’5  = qL5qR we have 

L L  L + -+ ’+ = exp(icaJa)+ 
R R  R + --f ‘+ = exp(irAJA)+ 

where the left and right ‘spinor’ parameters, ea and eA, depend on only the parameters 
of qL and qR respectively. The J, and J A  are the matrix generators of the left and right 
adjoint groups in an arbitrary representation. For the adjoint representations we have 
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specifically 
. c  

(Ja>cb = l c a b  

c 
( ] A ) ;  = - i c A B  

and, in view of the numerical equality of the cag and cAg we can put in general 

A J ,  = - 8 , J A .  

This is, of course, only a numerical equality. J ,  and J A  are matrix operators in dzferent 
vector spaces. It is possible to carry the calculation through for an arbitrary repre- 
sentation but for the moment we shall confine ourselves to the simplest one, i.e. the 
fundamental or ‘quark’ representation, and define the corresponding generators 
A,, AA which can be defined by the multiplication law 

Let us just consider the SU(n) case from now on. The  AA satisfy the same equation 
as the A, except that the A term on the right-hand side is reversed in sign.? 

to the para- 
meters of y L  and rlR. T o  do this we define linking quantities between the adjoint 
spaces and the underlying manifold X,, i.e. we construct bilinear functions of # and # 
that transform as tensor fields in X,. We do not wish to go into details of the general 
theory of these objects but shall simply state the almost obvious that, for the quark 
representation, the required quantities are the generalizations of the A, to the curved 
space. Thus we define A, and A, by 

We now wish to investigate more closely the relation of the ea and 

L R 

L R 

L L  2 L 
&A, = - g,, + ( dao + icU8 v)h n 

where dadr is given by 
dub = A:B,bAzdUbc = A,A,A A B C  y d A B C .  

L R 
The A, and A, are, of course, functions of t. L R 

Earlier we had espoused the view that, under K,  the fields # and # transformed 
according to the adjoint group. In  this case the A, will be numerically invariant in the 
sense that they will transform as$ 

A U ( 0  -+ X , ( t ’ )  * 

This corresponds to the usual attitude in special relativity. However, as was discussed 
previously, we can just as well say that the # transform as scalars, 

#(t) ++’(t’) = +(t) 
and that the A, transform as 

t ~ A B C  = -:T~[X,AX~&J = 6%6$6C, dabc. See the interesting and relevant discussion by 
Biedenharn (1963) on the invariants of SU(n). 

$ Where convenient we leave off the symbols L and R. 
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The coordinate transformation here is that induced by the point transformation 
5 -+ '5, i.e. 5"' = 'tu. I t  is the inverse of the dragged along transformation (which we 
could also have used). S is an adjoint quark representation matrix. 

The second attitude is, in many ways, a more useful one. It allows us to discuss 
directly general coordinate transformations and not just those induced by K-f. Under 
general coordinate transformations the 41 are scalars and the A" transform as vectors, 

at"' 
A"([) -+ A"'(( ' )  = -AB(() 

2 P  (4) - _  
so that the bilinears 

$+;U$, ;?Tu; 
form vector fields. When the general coordinate transformation happens to be one 
that can be induced by a member of K the A"' satisfy the same multiplication law as 
the A", i.e. substituting 8:,Au' for A" in (3) yields equations that are still true. We 
can now use the theorem that two solutions of (3) are related by 

s ; x  = s-1A"s ( 5 )  
where S is an adjoint matrix, as before. 

one, 
Let us assume that the transformation 5 -+ '5 belonging to K is an infinitesimal 

tu -+ + d p  = + ea dt A:([) + eA dt Ai([) .  
(ea, eA = constants) 

S = l + i T d t  
Then we shall write S as 

where T is given separately for left and right transformations by 

L n 
T = T = 

and we have conveniently separated out a factor of dt from the ea and eA,  The problem 
now is to determine the relation between the ea, e A  and the ea, eA,  This easily follows 
from (4) and ( 5 ) .  Since the A" is a vector field then its Lie derivative over the general 
transformation (" + '5" = ("+7;" dt is (e.g. Schouten 1954, p. 105) 

EAU = v~ a , ~ a  - AD aBva.  
V 

(This is just a fancy way of writing (4).) In  the case where this transformation belongs 
to K,  (5) implies that 

Hence we get the condition 

EA" = i[T, A"]. 
V 

i[T, A"] = EA" z ' B ~ ~ A ~  - A 5 a p a  = (6) 
V A 

where 

(7 )  
U A cc Lu Ru vu = eaAa+e A, e + e .  

L n 
If we have that the 4 and 41 are invariant$ under the right and left groups respectively 

t That is we wish to include allowable coordinates rather than just preferred ones. 
$ Note that we are using the usual language here and we shall occasionally revert to this 

usage from force of habit. 
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then the corresponding T must vanish. This implies that the ha must be linear 
combinations of the A". Thus we have in particular 

which are consistent with (2) and (3), and we can write 

T = &'Aa. 

If we substitute ( 7 )  and (8) into (6) we easily find that 

and so (9) 

(The formulae 
+ - 

Luff = 7 9  7p" - U 4  VJ4v" 
2) 

- 
= EByBu"-12*"Bva = Z . q p " - $ ' Q a Z ' "  

are sometimes useful.) 
Equation (9) is what we expected because the left and right groups have the same 

structure. I t  also shows that the ea and are constants. Further, under 'isospin' 
transformations #I and #I transform in the same way, while under chiral transformations 
they transform oppositely. Thus the #I and q5 are to be identified with the quark 
fields before the Gursey transformationt (Gursey 1960, Chang and Gursey 1967, 
Cronin 1967, Brown 1967). We must, however, be a little more careful about 
Lorentz transformations when introducing the quarks. Let us only consider massive 
spin-half particles for which we 'must' have a Dirac spinor +, split into upper and 
lower two-spinors rp and x, which are also iso-spinors, 

L R  

L R 

Since y and x exchange places under reflection (we adopt, temporarily, the usual 
way of speaking) and so do left and right fields, we see that we have two possibilities, 
corresponding to left and right fields for both y and x 

If the first of these is identified with the fundamental baryons the second will be their 
chiral partners. 

The  mass term in the quark Lagrangian is K$+ which, for our y-matrix representa- 
tion, mixes upper and lower components 

KI& = i+++ -#I+x) 
i.e., according to (lo), mixes left and right fields. Thus, because of Lorentz invariance 
it is not possible to get away with chiral invariants constructed from #I or + separately 
such as #I++ or ++#I. We need invariants containing both y and x. 

L R  

L L  R R  L R 

t cf. also Weinberg (1968), 5 V. 
A5 
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T o  construct these we make use of the important fact that the (a)  and (A)  frames 
are related at each point by an adjoint representation transformation. Specifically this 
relation is (e.g. Schouten 1954, p. 200), 

A:([) = D:(t)&c(o = D:(S)A:(t) 

a t )  = [exp( - U>lE 

(11) 
and can be proved directly or from the explicit forms of the A; and Ai  in canonical 
coordinates given in I (14). In  canonical coordinates (i) I):([) takes the form 

where 

U = U(()  = ["C,, [Cali = c,;. 

It is now reasonably clear what is going to happen. To  spell out the details we 
L R 

note the relation between X and X following from 

Thus, by the fundamental theorem, we can write 
L 
A, = -W-  IhR, W, W = exp( i&waAa), COa = coy[) 

and so 

L R 
which shows that W+ transforms like $ and invariants 

can be constructed for general left and right fields. If we use canonical coordinates 
the parameters w a  in the 'metric' W are just the coordinates of the point we are at, 
i.e. 

g a  = -p. 
The relation of this analysis with that of Gursey (1960) and Chang and Gursey (1967) 
is now apparent. The  different forms of the transformation matrix discussed in the 
latter paper correspond to different coordinatizations of group space, as is well 
known. The  exponential form is singled out as that resulting from using canonical 

We may now perform the standard unitary transformation to new fields +o and 4o 
coordinates and, therefore, must have a somewhat privileged position. R 

where 

The question now arises as to whether these fields can be introduced more directly. 
Let us go back to where we introduced spinor fields for the first time. The  fields 
4 and 4 emerge most naturally but we can give a more general approach in the follow- 
ing way. Firstly we define quantities X" satisfying (3L). Equations (4) and (5) are 
valid where 

S = exp(i&ffh,). 

Scalar fields 4 are now introduced to make the bilinear quantity ++Aa$ a vector field. 
We now say that the most general solution of (3L) is 

L R  

(1 a b  ha = A,Sbh 
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where Ab satisfy (2) and have3xed constant values. Sf is an adjoint representation 
matrix which is, in general, a function of position 

S = exp(PC,), = E.”([). 

The  different types of fields now result from the different choices of S. Thus we 
have the two types 4 and do for which S is 1 and exp($&Ta) respectively, if we use 
canonical coordinates. 

Similar considerations apply to the ‘right’ quantities. Thus the most general 
solution of (3R) is 

L L 

where 
U - A  B A” AARBA 

a A b  R,A = eXp(paCa)b8a8B, p a  = p u g )  
R R 

and we obtain the two types 
If we like we can start from, say, just the left quantities and obtain all others 

through adjoint rotations and reflections. 
What we are saying is that to introduce spinors into X, we need a set of preferred 

local coordinates. The structure of the space throws up two such sets, 12; and AS, 
and hence the spinors 4 and d. But we are not restricted to just these two sets. As 
we have said there is no apriori or necessary connection between spinor spice and X,. 

The do fields have the important property that do transforms like do. This follows 
from the relation (11) which can be rewritten 

and do if pU equals 0 and -&tu respectively. 

L R 

L R 

[ e x p ( ~ U ) ] ~ A ~  = [exp( - - + U ) ] ~ S ~ A ~ .  

We thus reach the same conclusions as before and can put, for the ‘nucleon’ and 
its chiral partner, 

The  mass term 

to discuss just the left fields and we look at the quantities 

is then chiral invariant. 
We now wish to determine how the do fields transform under K f .  I t  is sufficient 

L 
/Z;a(t> = X,[exP(4EuCa)1fbA~(t). 

If -+ ‘ E  is a motion we expect these to transform as 

L L &do -+ q U ( ’ t ) s  
and we wish to find S = 1 + iT. 

The first step is the transformation 
L 

+ hd[exP(4t‘C,)1f~’A~(’t). 

(Note that the factor exp(&t”C,) transforms as a scalar.) Under the transformation 

t ‘4 = ?1L!$qR 

t We could use equation (6) but we prefer to repeat the analysis. 
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If we can find parameters 5, such thatf- 

we can determine S because we would then have 
L 
& ( f )  --f x~~exp(ouCu~~.db[ex~(~'fuCu)lb~A~('~) 

= exp( -~iouA,)h, exp(-~ io"~ , ) [exp(&'~"~, ) ]b ,~~( ' f )  

= exp( -&iuuAa)&('f) exp(&iauAu). 
L 

Thus 
S = exp($iu"A,). 

For the particular case of f -+ ' f  belonging to the adjoint group (e.g. pure isospin 
transformations) o' are just equal to q t .  This follows from the relation 

'E = vb-' 
or 

and the fact that this relation is a linear one between ' tu and f a  (see I). 
In  the case of pure chiral transformations f - + ' E  = q f q  we shall proceed by 

determining the infinitesimal transformation. For the moment let us work with a 
general small change in E ,  viz. 

dE' = (A: dq" + Ai  dqA). 

The  adjoint subgroup results from the restriction dqA = - 8; dq" and the chiral 
subgroup from dvA = 8: dqu. 

We need the relation between exp($'f"C,) and exp($f"C,). This is obtained by 
expansion: 

We now use the theorem 

exp(&'faCu) N a,{exp(&jTu)} d y  + exp(&%',). 

d{exp(M)) = expM exp( - t M )  dMexp(tM) dt 1: 
and the generator property 

to write 
exp( -TuC,)Cb exp(TaC,) = C,[exp( - T a ~ , > l f b  (14) 

1 

exp(&'E"C,) exp(&E"C,) [ 1 + 4Cd 1 [exp( - &?C,)]f, dt 8,fb df"] . 
0 

t For the time being we retain the indices in, what is, a matrix equation. 
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Performing the integration we arrive at the result 

For the quantity d('acrtb we have 

d("a,tb = d t b  = 8b(A: dqa+ A; dqA) 

depending only on the A objects in canonical coordinates-indicated by the indices 
i, j ,  etc. Let us denote the expression in curly brackets in equation (15) by 

( 1 - d ~ ~ C d ) .  

Equation (12) then yields after substitution from (15) and expansion in qL and ua, 
which are assumed small, 

exp(+taCa)(d$ + dT )C, exp( -&t"C,) = d /  Cd. b 

Whence, using (14), 

where 

We can check that this gives the correct result for the adjoint case. Then we have 
for d t d  the expression (see I, or (13)) 

and it is easy to see that this, together with (16) and (17), implies that doa equals 
dq&, as required. 

For the pure chiral transformation, d t d  is given by (see I (19), (25)) 

d 
d t  F t  dTL = [("c, COth(+(CCc)]Pb dq; 

and a little algebra soon yields the answer 

(18) 
b d b  dud = [tanh($f"C,)];b dyL = v.b dvL. 

The r d b  quantity hereby defined is the same as that introduced by Weinberg (1968, 
equation (3.1)) and developed by Macfarlane, Sudbery and Weisz (unpublished), 

As in I, for the simplest case of chiral SU(2) the expression for z f b  may be simplified 
somewhat. We find 

which fits in, of course, with Weinberg's general expression (1968, equation (3.5)). 
The  corresponding transformations of the +o fields can be written down immed- 

iately since we know already that they transform like the +,,. From their definition, 

R 

L 
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R L 
the 4" are related to the )da by 

R L 
?a = -?a 

using (1 1). 
The restriction of the present discussion to quark fields is not a serious one and 

can easily be lifted. If one does not wish to talk about fields transforming one must 
introduce quantities analogous to the objects of Lorentz group theory (see e.g. 
Dowker and Goldstone 1968, Dowker and Dowker 1966, where the original references 

The  answer is that for the general zero fields +o the transformation matrix S is 
are given). L 

given, infinitesimally, by 

where, for the adjoint case, dud = dqd and for the pure chiral case dud is given by (18). 
Similar results hold for the right fields 

If we want to write down a Lagrangian including quark fields then naturally we 
shall need derivatives and, as in general relativity, the concept of covariant derivative 
arises. We thus turn to this topic. 

s = 1 + idudJd 

R 

3. Covariant derivatives 
We refer to our paper (Dowker and Dowker 1966) and to references therein for a 

relevant discussion of the covariant derivatives of spin functions in curved space. We 
shall review the situation here for the case in point. 

The  formalism is covariant under the group of 'spin' basis changes, i.e. the trans- 
formations 

where S is an arbitrary matrix, constitute merely a change of description exactly 
analogous to general coordinate transformations. We should thus like to write the 
theory in a form manifestly covariant under these transformations, hence a covariant 
derivative for 'spinor' quantities. 

+ --f s+, A" -+ (S+)-lA"S-l 

The covariant derivative of + is defined by 

VR+ = 'Ld + 
where rB is a matrix in 'quark' space (what we have called 'spin' space previously). 

that of A" can be found. Thus 
Now the quantity ++Aa+ is a vector field and so, by taking its covariant derivative, 

v/d++Aa+) = (+tA"+)lls (20) 
where I /  indicates the tensor covariant derivative with respect to the 'zero' connec- 
tion, i.e. the usual covariant derivative in a Riemannian space (see I). If we expand 
(20) using the distributive rule we find 

V7gA" = A, ,, 4 - rpQ, - AJ, .  
Although it is not necessary, we are going to choose that VOXa vanish. This is 

usually done in the analogous spin-in-curved-space problem. Thus we have 

from which equation an explicit form for Po can be found if we assume the general 
form 
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Equations (21) and (22) yield, if the commutation rules for the A, are employed, 

6 + for L 
(- for 

*A&, a.; = -$A,,,, 

To proceed further we need an expression for AaIl4 as a linear combination of A6. This 
will follow if we give the relation between A, and A, (or A, for right fields). We are 
really only interested in two such relations: those which define the + and +o fields'f, 
i.e. 

L L 

(24) 
L 

A, = A, = A,AE 

L 
Equations (23) and (24) easily give the result for the + fields 

L 
The  calculation is a little more involved for +o and we again encounter the derivative 
i3,(exp(+[aC,)} calculated in the last paragraph. We find finally 

If we use canonical coordinates for the ( we have 

(28) 
Q . j  L i  = gsk~ta.h(a('Cc,)]8bs~. 

Expressions (26) and (27) could have been derived directly from the results of $ 2  
(cf. equation (18)). R R 

Similar results hold for the right fields + and +o. We have 

and 

$:4- = - g A ~ 6 ~ [ t a n h ( & ( c c C , ) ] ~ b s ~ A ~ .  

The  v, derivatives are, of course, covariant derivatives in group space. For 
insertion in a Lagrangian we need space-time derivatives. With Meetz (1969) we 
define the space-time covariant derivative of a quantity 0 by 

where 

Space-time tensor indices are taken from the middle of the Greek alphabet, p, Y ,  etc. 
Since the space-time point xu is a parameter in all quantities of the preceding analysis, 
@ will be a function of x through ( and also explicitly, in general. The  symbol 8, acts 
only on the explicitly occurring x's. 

t The corresponding results for the right fields need only be written down. 
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L L 
In  terms of the constant A,, we find for ru and Fu the expressions 

where V = &U = +CUEa. For compactness we have now gone over into a matrix 
notation. Thus quantities with superscript indices, for example tu, are column 
matrices E ,  while those with subscript ones, for example A,, are row matrices A. 

R R 
As matrices, in quark space, Fu and FLL are given by 

0 

R L  

T u  = F G *  

Expression (30) is identical with that of Callan et al. (1969) if we note that their E 
is equal to half the E used in this paper. The  construction of specific Lagrangians can 
now proceed along the lines indicated in their paper. Thus we would have the quark 
Lagrangian, with 'minimal' meson interactions 

The  particular meson-quark coupling implied by this Lagrangian is, at least to 
lowest order in E ,  of the 'current-current' type, for example for SU(2) 

If we wish to include an ordinary pseudovector coupling then this must be added in 
non-minimally. It is contained in the term 

$ 0 y u y 5 ~ a $ 0 a u P  = &y'y5&bo exp( V)&Z,,t" = $0y'y5x$0 . D u t  (33) 

is the meson 'covariant derivative' of Weinberg (1968) and Callan et al. (1969). 
Its appearance is simply due to the fact that we have reintroduced the constant 
matrices A,. I n  the present approach D,f is not a fundamental object but appears when 
we write the theory in terms of tangent space quantities. 

From this result follows the theorem of Weinberg (1968) and Colman et al. (1969) 
that a Lagrangian which is SU(n) invariant and is constructed from $o, Du+o and 
Dbf is also chiral invariant. 

It is only necessary to replace +Aa by J ,  in the above to obtain the corresponding 
results for representations higher than the quark one. 

At this point we shall end the didactic part of this paper and shall pass on to some 
(speculative) comments. 
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4. Comments 
The introduction of a non-integrable connection related to the meson fields 

allows us to discuss all the topics associated with a gauge-field theory. Thus a general- 
ized Aharonov-Bohm situation can be visualized, if not actually realized. The analogues 
of Dirac monopoles can be discussed and here the (known) topology of group space 
would be significant (the first, and last, two Betti numbers vanish, etc.: for example, 
see Hodge 1952), and so on. 

We should, of course, remember that the physical interaction may not be purely 
minimal and in this connection we note that the term of equation (33) could be 
included in (32) by replacing D, by D, where 

* 
* 
D,$ D,$+gXD,[y5$, g = constant. 

Another possible problem is associated with the non-commutativity of the V a  and 
hence of the D,. Thus we find 

where R,, is a sort of ‘spin curvature’. If we want to write down interacting field 
equations for particles of higher spin then consistency problems will arise (e.g. 
Fierz and Pauli 1939). It may be that these considerations are nugatory if we take the 
S-matrix approach. 

5. Conclusion 
We have seen that the ‘other fields’ are to be associated with the group of local 

rotations in group space and that different choices of the corresponding local frames 
give different fields, i.e. fields with different transformations. If these local frames are 
chosen to coincide with the A: or AA, vectors, which determine the structure of the 
space, then the fields so obtained transform linearly. If we take the frames obtained by 
rotating the A: and AA, half way towards each other then we obtain two sets of fields 
transforming non-linearly but cogrediently. This rotation to symmetrically placed 
local axes is the Gursey transformation. I t  should be clear that we will obtain fields 
which transform cogrediently if we choose coincident local frames, i.e. frames obtained 
by rotating A; and AA, until they overlap. 

For chiral SU(2) any fields but pions will be ‘other fields’. Thus, for example, the 
kaons will be introduced through local, i.e. tangent space, considerations. On the 
other hand, in chiral SU(3) the kaons will in fact form part of the octet of coordin- 
atizing fields. No doubt this sort of situation could be described geometrically in 
terms of the embedding of the corresponding group spaces. 

I t  is possible to question the logical position of the fields forming the coordinates 
of group space. If nuclear democracy means anything then all fields should be on the 
same footing, i.e. all physical fields will be ‘other fields’. There is also nothing to 
stop us introducing the spaces associated with all the representations of G and not 
just the adjoint one. These spaces are more complicated since G does not, in general, 
act transitively on them. 

References 
BIEDENHARN, L. C., 1963, Lectures in Theoretical Physics, Vol. 5 (New York: Interscience). 
BROWN, L. S., 1967, Phys. Rev., 163,1802-7. 
CALLAN, C. G., COLEMAN, S., WESS, J.,  and ZUMINO, B., 1969, Phys. Rev., 177, 2247-50. 
CARTAN, E., 1938, The‘orie des Spineurs (Paris: Hermann). 



58 J.  S. Dowker 

CHANG, P., and GURSEY, F., 1967, Phys. Rev., 164, 1752-61. 
COLEMAN, S., WESS, J., and ZUMINO, B., 1969, Phys. Rev., 177, 2239-47. 
CRONIN, J. A.,  1967, Phys. Rev., 161,1483-94. 
DE WITT, B. S., and DE WITT, C. M., 1952, Phys. Rev., 87, 116-22. 
DOWKER, J. S., 1970, J .  Phys. A: Gen. Phys., 3, 33+. 
DOWKER, J. S., and DOWKER, Y .  P., 1966, Proc. Phys. Soc., 87, 65-78. 
DOWKER, J. S., and GOLDSTONE, M., 1968, Proc. R. Soc. A, 303, 381-96. 
FIERZ, M., and PAULI, W., 1939, Proc. R. Soc. A, 173, 211-32. 
G~RSEY,  F., 1960, Nuoao Cim., 16, 230-40. 
HODGE, W. V. D., 1952, Theory and Applications of Harmonic Integrals (London: Cambridge 

MEETZ, K., 1969, J .  Math. Phys., 10, 589-93. 
SCHOUTEN, J. A. ,  1954, Ricci-Calculus (Berlin : Springer-Verlag). 
WEINBERG, S., 1968, Phys. Rev., 166, 1568-77. 

University Press). 

J .  P H Y S .  A :  G E N .  P H Y S . ,  1970 ,  VOL.  3. P R I N T E D  I N  G R E A T  B R I T A I N  


